CLOUT (Computational Logic for Use in Teaching)
with
LPS (Logic-based Production Systems)

Robert Kowalski and Fariba Sadri
Imperial College London

Miguel Calejo
Interprolog.com

Outline:

The Goal
To reconcile and combine
computational and logical thinking

The Problem

The Solution

CLOUT (Computational Logic for Use in Teaching)

Computational Algorithmic thinking

thinking \ using state transitions

Abstraction

Goals and beliefs
Logical

thinking - Problem decomposition
by backwards reasoning

Top down and bottom up reasoning
(= analysis and synthesis)

Outline:

The Goal
To reconcile and combine
computational and logical thinking

The Problem
Two kinds of systems

The Solution

Two kinds of programming systems

STATECHARTS: A VISUAL FORMALISM FOR
COMPLEX SYSTEMS*

e.g. Iogic programs
David HAREL —
For transformational systems (e.g., many kinds of data-processing systems) one
has t 1 ormation, or function, so that an input/output relation

is usually sufficient. While transformational systems can also be highly complex,
there are several excellent methods that allow one to decompose the system’s
transformational behavior into ever-smaller parts in ways that are both coherent
and rigorous. Many of these approaches are supported by languages and imple-
mented too a orm very well in practice. We are of the opinion that for
W present the more difficult cases, this problem has not yet
been satisfactorily solved._Several important and promising approaches have been
proposed, and Section 8 of this_paper discusses a number of them. However, the

e.g. production systems

Science of Computer Programming 8 (1987) 231-274
North-Holland

STATECHARTS: A VISUAL FORMALISM FOR
COMPLEX SYSTEMS*

David HAREL

Department of Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel

Much of the literature also seems to be in agreement that states and events are
a priori a rather natural medium for describing the dynamic behavior of a complex
system. See, for example, [7-9, 19, 23]. A basic fragprentof SUCh a descripfion 15 2
die fransition, which takes the generdl forim when event a occurs in state A, if
condition C is true at the time, the system transfers to state B”. Indeed, many of

the informal eXciramges CoTIce gthie dynamics of systems are of this nature; e.g.,
“when the plane is in cruise e and switch x is thrown it enters navigate mode”,

reactive rule

Two kinds of database systems: Active Databases and
Deductive Databases (e.g. Datalog)

In: The Knowledge Engineering Review, vol. 8 no. 2, pages 121-143, June 1993

An Overview of Production Rules
in Database Systems

Eric N. Hanson Jennifer Widom

Database researchers have discovered that with the addition of production rules facilities,
database systems gain the power to perform a number of useful database tasks with one uniform
mechanism: they can enforce integrity constraints, monitor data access and evolution, maintain
derived data, enforce protection schemes, maintain version histories, and more. (Previous support

There is a substantial body of work on another kind of database system with rules deductive
database systems. Deductive database systems are similar to conventional database systems in
that they are passive, responding only to commands from users or applications. However, they
extend conventional database systems by allowing the definition of PROLOG-like rules on the data

and by providing a deductive inference engine for processing recursive queries using these rules.

@uctive and active database rule systems are fundamentally diﬂh@nd both types of rules

could thecretically be present in a single system. We focus on active database systems and do

The Problem: Conventional logical languages
are not computationally feasible

e initiates q
e terminates p

timet time t+1

It is necessary to reason that
uis true at time t+1 because u was true at time t
and u was not terminated from t to t+1.

vis true at time t+1 because v was true at time t
and v was not terminated from t to t+1.

w is true at time t+1 because w was true at time t
and w was not terminated from t to t+1.

The Problem: Imperative languages
do not have a logical meaning

if A then B means change of state. e.g.
If A holds then do B. (“imperative”)

Programming —
state charts
abstract state machines if A then B

does not have a
Databases logical meaning
active databases

=

States change

Al .
. destructively.

production systems
agent languages

10

Production systems do not have a logical meaning

Production Systems —Herbert 4. Simon

Production systems are computer languages that are widely
employed for representing the processes that operate in
models of cognitive systems (NEWELL and Simon 1972).

In a production system, all of the mstructions (called pro-
ductions) take the form:

@f{:mn{litimlﬂh THEN<<actions=>.)

That 1s to say. “1f certain conditions are satistied. then take
the specified actions™ (abbreviated C — A). Production sys-

Tue MIT
ENCYCLOPEDIA
OF THE
COGNITIVE
SCICNCES

I II
-l

11

Production systems do not have a logical meaning

fire = deal-with-fire
deal-with-fire = eliminate
deal-with-fire = escape

Adding fire to working memory.
Triggers two candidate actions eliminate and escape.

Conflict resolution decides between them.

12

Production rules and logic programs:
It can be hard to tell the difference.

“Rules are if-then structures...
very similar to the conditionals... (of logic)
but they have very different
representational and computational properties.”

13

Reactive rules and logic programs:
It can be hard to tell the difference

Unlike logic, rule-based systems can also easily represent strategic infor-

mation about w < nften contai

represent goals,

such as IF you want to go home for the weekend, and you have bus fare, THEN
xou can catch a bus. Such information about goals serves to focus the rule;

This production rule in Thagard’s Mind
is a logic program (or belief) in LPS:

You go home from T1 to T2
if you have the bus fare at T1,
you catch a bus from T1 to T2.

(combined with backward reasoning)

14

Reactive rules and logic programs:
It can be hard to tell the difference

AgentSpeak(L): BDI Agents
speak out in a logical computable
language

Definition 5 Il ¢ ica triggering ovent by b are beliel literals, and fy,....0r, are goals or

actions [GE by aoc oAby = Bynahy s a plan NUhe expression to the left ol the arrow is

relerred to as The fread of Che plan and The expression to the right ol the arrow is relerred
to as the body of the plan. The expression to the right of the colon i the head ol a plan
i= relerred to as the conderi. For convenience, we <hall rewrite an empty body with the
pxpression frae.,

With this we complete the specilication ol an agent, Lu—=ertTmmrary, G GOIZH0T S peC s
agent by writing a =et of base beliels and a <et of plans. Nhis i= <imilar to a logic programiming)

y
o

specification ol Tacts and rules. However, <ome ol the major differences between a logic

15

LPS and BDI agents compared

This “logic programming-like” plan in AgentSpeak

+location{waste,X) :location(robot,X) &
location(bin,Y)
<- pickiwaste);
llocation(robot,Y)
drop(waste) . (P1)

is a reactive rule (or goal) in LPS:

if location(waste, X) at T1, location(robot, X) at T1, location(bin, Y) atT1
then pick(waste) fromT1 to T2,

move-to-location(robot, Y) fromT2 to T3,

drop(waste) from T3 to T4.

16

Goals and Beliefs:
It can be hard to tell the difference.

All humans are mortal.
All humans are kind.

Goals: if human(X) then mortal(X).

if human(X) then kind(X).
or

Beliefs: mortal(X) if human(X).
kind(X) if human(X).

17

Outline:

The Goal
To reconcile and combine computational and logical
thinking

The Problem
Two kinds of systems

The Solution
Goals and Beliefs
Model generation
(with explicit representation of events and time)

LPS: Computation = Model Generation

Computation executes actions
to generate a world model
to make goals true.

A world model is the minimal model of a
logic program describing beliefs about
states, actions, external events,
intentional predicates, and

complex events and plans.

LPS: Computation generates actions
to make reactive rules true

The current state is

Actions
updated

destructively

Actions are
chosen and

combined with
external events

Reactive rules whose
conditions are true
are triggered.

Logic programs

reduce goals to

External events subgoals and actions

LPS combines reactive rules, logic programs and causal laws

Reactive rule: if fire then deal-with-fire.

Logic program: deal-with-fire if eliminate.
deal-with-fire if escape.

Causal law: eliminate terminates fire.

Adding fire to the current state.

Generates two alternative actions eliminate or escape.
Generates alternative sequences of states

to make the reactive rule true:

eliminate escape escape

ﬁﬁ

or

21

World models are sequences of states, actions and external
events, described by atomic sentences

without time stamps with time stamps
for efficiency for logical semantics

States are sets of facts (or fluents):

fire fire(10:15)

Events (including actions) cause state transitions:

eliminate eliminate(10:15, 10:16)

22

The syntax of LPS

Reactive rules in First-order logic:

for all X [antecedent — there exists Y consequent]
or if antecedent then consequent.

Clauses in logic programming form:

for all X [there exists Y conditions — conclusion]
or conclusion if conditions.

23

The syntax of LPS

without time stamps
for readability

Reactive rules:

if fire
then deal-with-fire.

Logic programs:

deal-with-fire
if eliminate.

with time stamps
for logical semantics

if fireatTl1
then deal-with-fire fromT2 to T3,
T1<T2.

deal-with-fire from T1 to T2
if eliminate fromT1 to T2.

24

State transitions are described by a
“programmable” causal theory

Postconditions (effects):
ignite(Object) initiates fire if flammable(Object).

eliminate terminates fire.

Preconditions (constraints):

false eliminate, fire, not water.

Persistence (inertia):

Fact/fluents persist without needing to reason that they persist.

25

% Fire example with keywords in blue.

fluents fire.
actions eliminate, escape.
events deal with fire.

initially fire.

if fire at T1

then deal with_fire from T1 to T2.

deal with fire from T1to T2
if eliminate from T1 to T2.

deal with fire from T1to T2
if escape from T1 to T2.

eliminate terminates fire.

26

maxTime(10).
fluents fire, water.
actions eliminate, ignite(), escape, refill.

observe ignite(sofa) from 1 to 2.
observe ignite(bed) from 4 to 5.
observe refill from 7 to 8.

initially water.

flammable(sofa).
flammable(bed).

if fireat Tl

then deal with_fire from T2 to T3.
deal_with_fire fromT1to T2
if eliminate from T1 to T2.
deal_with_fire fromT1to T2
if escape from T1 to T2.

ignite(Object) initiates fire if flammable(Object).

eliminate terminates fire.
eliminate terminates water.
refill initiates water.

false eliminate, fire, not water.

The Dining Philosophers

maxTime(7).
fluents available().
actions pickup(_,), putdown(_,).

initially available(fork1), available(fork2), available(fork3),
available(fork4), available(fork5).

philosopher(socrates).
philosopher(plato).
philosopher(aristotle).
philosopher(hume).
philosopher(kant).

adjacent(fork1, socrates, fork2).
adjacent(fork2, plato, fork3).
adjacent(fork3, aristotle, fork4).
adjacent(fork4, hume, fork5).
adjacent(fork5, kant, fork1).

% dining philosophers

if philosopher(P)
then dine(P) from T1 to T2.

dine(P) from T1to T3 if
adjacent(F1, P, F2),
pickup(P, F1) from T1 to T2,
pickup(P, F2) from T1 to T2,
putdown(P, F1) from T2 to T3,
putdown(P, F2) from T2to T3.

pickup(P, F) terminates available(F).
putdown(P, F) initiates available(F).

false pickup(P, F), not available(F).
false pickup(P1, F), pickup(P2, F), P1 \= P2.

What happens if we replace:

dine(P) from T1 to T3 if
adjacent(F1, P, F2),
pickup(P, F1) from T1 to T2,
pickup(P, F2) from T1 to T2,
putdown(P, F1) from T2 to T3,
putdown(P, F2) from T2 to T3.

with:

dine(P) from T1 to T5 if
adjacent(F1, P, F2),
pickup(P, F1) from T1 to T2,
pickup(P, F2) from T2 to T3,
putdown(P, F1) from T3 to T4,
putdown(P, F2) from T4 to T5.

31

Conclusions

LPS combines
computational thinking and
logical thinking.

LPS is a practical, logical framework for computing.

LPS is not a full-scale framework for intelligent thinking,
but it can be extended.

32

maxTime(7).
fluents available().
actions pickup(_,_), putdown(_,).

initiallyavailable(fork1), available(fork2), available(fork3), available(fork4), available(fork5).

philosopher(socrates).
philosopher(plato).
philosopher(aristotle).
philosopher(hume).
philosopher(kant).

adjacent(fork1, socrates, fork2).
adjacent(fork2, plato, fork3).
adjacent(fork3, aristotle, fork4).
adjacent(fork4, hume, fork5).
adjacent(fork5, kant, fork1).

if philosopher(P)
then dine(P) from T1 to T2.

dine(P) from T1 to T3 if
adjacent(F1, P, F2),
pickup(P, F1) from T1 to T2,
pickup(P, F2) from T1 to T2,
putdown(P, F1) from T2 to T3,
putdown(P, F2) from T2 to T3.

pickup(P, F) terminates available(F).
putdown(P, F) initiates available(F).

false pickup(P, F), not available(F).
false pickup(P1, F), pickup(P2, F), P1\=P2.

33

% The map colouring problem.

maxTime(5).
actions paint(_,).

country(sweden).
country(norway).
country(finland).
country(russia).
colour(red).
colour(yellow).
colour(blue).

adjacent(sweden, norway).
adjacent(sweden, finland).

adjacent(norway, finland).
adjacent(norway, russia).
adjacent(finland, russia).

norway

finland

russia

34

% The map colouring problem.

maxTime(5).

actions paint(_,).

country(iz).
country(oz).
country(az).
country(uz).
colour(red).
colour(yellow).
colour(blue).
adjacent(az, iz).

adjacent(az, oz).

adjacent(iz, oz).
adjacent(iz, uz).

adjacent(oz, uz).

0z

uz

35

% The map colouring problem
% For every country X, there exists a colour C.

if country(X)
then colour(C), paint(X, C) from 1 to 2.

% Two adjacent countries cannot be painted the same colour.

false paint(X, C), adjacent(X, Y), paint(Y, C).

/* We can also write
if country(X)
then colour(C), paint(X, C) from T1 to T2.

*/

36

% The map colouring problem.

maxTime(5).
actions paint(_,).

country(iz).
country(oz).
country(az).
country(uz).
colour(red).
colour(yellow).
colour(blue).
adjacent(az, iz).
adjacent(az, oz).
adjacent(iz, oz).
adjacent(iz, uz).
adjacent(oz, uz).

if country(X)
then colour(C), paint(X, C) from 1 to 2.

false paint(X, C), adjacent(X, Y), paint(Y, C).

Bubble sort

Keep swapping adjacent elements that are out
of order until the array is ordered.

% bubble sort with relational data structure .

maxTime(5).

fluents location(_,).

actions swap(_,_, ,).

initially location(d, 1), location(c, 2), location(b, 3), location(a,4).

if location(X, N1) at T1, N2 is N1 +1, location(Y, N2) at T1, Y@<X
thenswapped(X, N1, Y, N2) from T2 to T3.

% swapped may not work if the order of the two clauses below is
% reversed. Perhaps for good reasons.

swapped(X, N1, Y, N2) from T1 to T2
if location(X, N1) at T1, location(Y, N2) at T1,
Y@<X, swap(X, N1, Y, N2) from T1 to T2.

swapped(X, N1,Y, N2) fromTto T
if location(X, N1) at T, location(Y, N2) at T, X@<Y.

swap(X, N1, Y, N2) initiates location(X, N2).
swap(X, N1, Y, N2) initiates location(Y, N1).
swap(X, N1,Y, N2) terminates location(X, N1).
swap(X, N1,Y, N2) terminates location(Y, N2).

false swap(X, N1, Y, N2), swap(Y, N2, Z, N3).

39

LPS executes actions concurrently

7N 7N
Time 1 d C b
/AR
Time 2 ¢ d a
AR /AR
Time 3 cjafd
/MR
Time 4 ° : b
Time 5 a b ¢

Teleo-reactivity

If later an object is moved, the same program will sort them again.

observe
observe

swap(a,1,c,3) from 11 to 12.
swap(b,2,c,3) from 15 to 16.

a C d
C b a d
b C a d
b a C

a C d
a C b d

Time 11
Time 12

Time 15
Time 16

41

maxTime(20).

fluents location(_,).

actions swap(_, , ,).

observe swap(a,1,c,3) from 11 to 12. %new

observe swap(b,2,c,3) from 15 to 16. %new

initially location(d, 1), location(c, 2), location(b, 3), location(a,4).

if location(X, N1) at T1, N2 is N1 +1, location(Y, N2) at T1, Y@<X
then swapped(X, N1, Y, N2) from T2 to T3.

% swapped may not work if the order of the two clauses below is
% reversed. Perhaps for good reasons.
%
swapped(X, N1, Y, N2) from T1 to T2
if location(X, N1) at T1, location(Y, N2) at T1,
Y@<X, swap(X, N1, Y, N2) from T1 to T2.

swapped(X, N1,Y, N2) fromTto T
if location(X, N1) at T, location(Y, N2) at T, X@<Y.

swap(X, N1, Y, N2) initiates location(X, N2).
swap(X, N1, Y, N2) initiates location(Y, N1).
swap(X, N1,Y, N2) terminates location(X, N1).
swap(X, N1,Y, N2) terminates location(Y, N2).

false swap(X, N1, Y, N2), swap(Y, N2, Z, N3).

% bankTransfer

maxTime(9).
actions transfer(From, To, Amount).
fluents balance(Person, Amount).

initially balance(bob, 0), balance(fariba, 100).
observe transfer(fariba, bob, 10) from O to 1.

if transfer(fariba, bob, X) from T1lto T2
then transfer(bob, fariba, 10) from T2 to T3.

if transfer(bob, fariba, X) from T1lto T2
then transfer(fariba, bob, 20) from T2 to T3.

% bankTransfer —the Causal Theory.

transfer(From, To, Amount) initiates balance(To, New)
if balance(To, Old), New is Old + Amount.

transfer(From, To, Amount) terminates balance(To, Old).
transfer(From, To, Amount) initiates balance(From, New)
if balance(From, Old), New is Old - Amount.

transfer(From, To, Amount) terminates balance(From, Old).

false transfer(From, To, Amount), balance(From, Old), Old < Amount.

false transfer(From, Tol, Amountl),
transfer(From, To2, Amount2), Tol \=To2.

false transfer(From1, To, Amount1),
transfer(From2, To, Amount2), From1 \= From?2.

% bankTransfer

maxTime(9).

actions transfer(From, To, Amount).

fluents balance(Person, Amount).

initially balance(bob, 0), balance(fariba, 100).
observe transfer(fariba, bob, 10) from 0 to 1.
if transfer(fariba, bob, X) from T1to T2
then transfer(bob, fariba, 10) from T2 to T3.

if transfer(bob, fariba, X) from T1to T2
then transfer(fariba, bob, 20) from T2 to T3.

transfer(From, To, Amount)initiates balance(To, New)
if balance(To, Old), New is Old + Amount.

transfer(From, To, Amount) terminates balance(To, Old).

transfer(From, To, Amount) initiates balance(From, New)
if balance(From, Old), New is Old - Amount.

transfer(From, To, Amount) terminates balance(From, Old).

false transfer(From, To, Amount), balance(From, Old), Old < Amount.

false transfer(From, Tol, Amountl),
transfer(From, To2, Amount2), Tol \=To2.

false transfer(From1, To, Amountl),
transfer(From2, To, Amount2), From1 \= From2.

Natural language grammars can be represented by logic programs

sentence -> nounphrase, verbphrase
nounphrase -> adjective, noun
nounphrase -> noun
verbphrase -> verb, nounphrase
verbphrase -> verb

adjective -> my

adjective -> your

noun -> name

noun -> what

noun -> bob

verb -> is

<

-> is the opposite of logical if. .

% sentences as complex events and as complex plans

maxTime(10).

observe say(turing, what) from 0 to 1.
observe say(turing, is) from 1 to 2.
observe say(turing, your) from 2 to 3.
observe say(turing, name) from 3 to 4.

if saying(turing, sentence) from T1 to T2
then saying(robot, sentence) from T3 to T4.

saying(Agent, sentence) fromT1to T3 if
saying(Agent, nounphrase) from T1to T2,
saying(Agent, verbphrase) from T2 to T3.

saying(Agent, nounphrase) fromT1to T3 if
saying(Agent, adjective) from T1to T2,
saying(Agent, noun) from T2 to T3.

saying(Agent, nounphrase) fromT1ltoT2 if
saying(Agent, noun) from T1 to T2.

saying(Agent, verbphrase) fromT1lto T3 if
saying(Agent, verb) from T1 to T2,
saying(Agent, nounphrase) from T2 to T3.

saying(Agent, verbphrase) fromTlto T2 if
saying(Agent, verb) from T1 to T2.

saying(Agent, adjective) from T1to T2 if say(Agent, my) from T1 to T2.
saying(Agent, adjective) from T1 to T2 if say(Agent, your) from T1 to T2.

saying(Agent, noun) fromT1to T2 if say(Agent, name)from T1 to T2.
saying(Agent, noun) fromT1to T2 if say(Agent, what) from T1 to T2.
saying(Agent, noun) from T1to T2 if say(Agent, bob)from T1 to T2.

saying(Agent, verb) from T1to T2 if say(Agent,is) from T1 to T2.

fluents said(_,).
actions say(_,_).

initially said(turing, []), said(robot, []).

say(Agent, Word) initiates said(Agent, NewPhrase)
if said(Agent, OldPhrase),
append(OldPhrase, [Word], NewPhrase).

say(Agent, Word) terminates said(Agent, OldPhrase)
if said(Agent, OldPhrase).

false say(Agent, Word1),
say(Agent, Word2),
Word1 \= Word?2.

maxTime(10).

fluents said(_,).
actions say(_,_).

observe say(turing, what) from O to 1.

observe say(turing, is) from 1 to 2.

observe say(turing, your) from 2 to 3.

observe say(turing, name) from 3 to 4.

if saying(turing, sentence) from T1 to T2 then saying(robot, sentence) from T3 to T4.

saying(Agent, sentence) fromT1to T3 if saying(Agent, nounphrase) fromT1to T2,
saying(Agent, verbphrase) from T2 to T3.

saying(Agent, nounphrase) from T1to T3 if saying(Agent, adjective) fromT1to T2,
saying(Agent, noun) from T2 to T3.

saying(Agent, nounphrase) fromT1to T2 if saying(Agent, noun) from T1 to T2.

saying(Agent, verbphrase) from T1to T3 if saying(Agent, verb) from T1 to T2,
saying(Agent, nounphrase) from T2 to T3.

saying(Agent, verbphrase) fromT1toT2 if saying(Agent, verb) from T1 to T2.
saying(Agent, adjective) from T1 to T2 if say(Agent, my) from T1 to T2.

saying(Agent, adjective) from T1 to T2 if say(Agent, your) from T1 to T2.
saying(Agent, noun) from T1 to T2 if say(Agent, name) from T1 to T2.
saying(Agent, noun) from T1 to T2 if say(Agent, what) from T1 to T2.
saying(Agent, noun) from T1 to T2 if say(Agent, bob) from T1 to T2.
saying(Agent, verb) from T1 to T2 if say(Agent, is) from T1 to T2.

initially said(turing, []), said(robot, []).

say(Agent, Word) initiates said(Agent, NewPhrase) if said(Agent, OldPhrase), append(OldPhrase, [Word], NewPhrase).
say(Agent, Word) terminates said(Agent, OldPhrase) if said(Agent, OldPhrase).
false say(Agent, Word1), say(Agent, Word2), Word1 \= Word?2.

50

