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Outline:

The Goal
To reconcile and combine 
computational and logical thinking

The Problem

The Solution



CLOUT (Computational Logic for Use in Teaching)
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Algorithmic thinking 
using state transitions

Abstraction

Goals and beliefs

Problem decomposition 
by backwards reasoning

Top down and bottom up reasoning
(= analysis and synthesis)

Computational 
thinking

Logical  
thinking
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Outline:

The Goal
To reconcile and combine 
computational and logical thinking

The Problem
Two kinds of systems

The Solution



Two kinds of programming systems
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e.g. logic programs

e.g. production systems
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reactive rule



7

Two kinds of database systems: Active Databases and 
Deductive Databases (e.g. Datalog)
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The Problem: Conventional logical languages
are not computationally feasible
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time t time t+1

e initiates q 
e terminates pQp, u, v, w Qq, u, v, w

It is necessary to reason that  
u is true at time t+1 because u was true at time t
and u was not terminated from t to t+1.

e

v is true at time t+1 because v was true at time t
and v was not terminated from t to t+1.

w is true at time t+1 because w was true at time t
and w was not terminated from t to t+1.



The Problem: Imperative languages 
do not have a logical meaning 

if A then B means change of state. e.g. 
If A holds then do B. (“imperative”)

Programming
state charts
abstract state machines

Databases
active databases

AI
production systems
agent languages 
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if A then B
does not have a 
logical meaning

States change 
destructively.
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Production systems do not have a logical meaning
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Production systems do not have a logical meaning

fire deal-with-fire
deal-with-fire eliminate
deal-with-fire escape

Adding fire to working memory.
Triggers two candidate actions eliminate and escape.
Conflict resolution decides between them.
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“Rules are if-then structures...
very similar to the conditionals... (of logic)
but they have very different
representational and computational  properties.”

Production rules and logic programs:
It can be hard to tell the difference.
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This production rule in Thagard’s Mind 
is a logic program (or belief) in LPS: 

You go home from T1 to T2
if you have the bus fare at T1, 

you catch a bus from T1 to T2.

(combined with backward reasoning)

Reactive rules and logic programs:
It can be hard to tell the difference
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Reactive rules and logic programs:
It can be hard to tell the difference
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is a reactive rule (or goal) in LPS:

if location(waste, X) at T1, location(robot, X) at T1,  location(bin, Y) atT1
then pick(waste) fromT1 to T2,

move-to-location(robot, Y) fromT2 to T3,
drop(waste) from T3 to T4.

LPS and BDI agents compared

This “logic programming-like” plan in AgentSpeak
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Goals and Beliefs:
It can be hard to tell the difference.

All humans are mortal.
All humans are kind.

Goals: if human(X) then mortal(X).
if human(X) then kind(X).

or

Beliefs:    mortal(X) if human(X).
kind(X) if human(X).
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Outline:

The Goal
To reconcile and combine computational and logical 
thinking

The Problem
Two kinds of systems

The Solution
Goals and Beliefs
Model generation 
(with explicit representation of events and time)



LPS:  Computation = Model Generation
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Computation executes actions 
to generate a world model
to make goals true.

A world model is the minimal model of a 
logic program describing beliefs about
states, actions, external events,
intentional predicates, and
complex events and plans.



LPS: Computation generates actions 
to make reactive rules true
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External events

The current state is 
updated

destructively

Reactive rules whose 
conditions are true 

are triggered.

Logic programs 
reduce goals to 

subgoals and actions

Actions are 
chosen and 

combined with
external events

Actions
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LPS  combines reactive rules, logic programs and causal laws

Reactive rule: if fire then deal-with-fire.

Logic program:    deal-with-fire if eliminate.
deal-with-fire if escape.

Adding fire to the current state. 
Generates two alternative actions eliminate or escape.
Generates alternative sequences of states 
to make the reactive rule true:

orfire

eliminate

fire

escape escape

fire

Causal law:    eliminate terminates fire.

fire



World models are sequences of states, actions and external 
events, described by atomic sentences
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without time stamps
for efficiency

States are sets of facts (or fluents):

fire

Events (including actions) cause state transitions:

eliminate

with time stamps
for logical semantics

fire(10:15)

eliminate(10:15, 10:16)



The syntax of LPS

for all X [ antecedent  there exists Y consequent]
or if antecedent  then consequent.
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Reactive rules in First-order logic:

Clauses in logic programming form:

for all X [there exists Y conditions  conclusion]
or conclusion if conditions. 



The syntax of LPS
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without time stamps
for readability

Reactive rules:

if fire
then deal-with-fire.

Logic programs:

deal-with-fire
if eliminate.

with time stamps
for logical semantics

if fire at T1 
then deal-with-fire fromT2 to T3, 

T1 T2.

deal-with-fire from T1 to T2
if eliminate fromT1 to T2.



State transitions are described by a 
“programmable” causal theory
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Postconditions (effects):

ignite(Object) initiates fire if flammable(Object).

eliminate terminates fire.

Preconditions (constraints):

false eliminate, fire, not water.

Persistence (inertia):

Fact/fluents persist without needing to reason that they persist.
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% Fire example with keywords in blue.

fluents fire.
actions eliminate, escape.
events deal_with_fire.

initially fire.

if fire at T1
then deal_with_fire from T1 to T2.

deal_with_fire from T1 to T2
if eliminate from T1 to T2.

deal_with_fire from T1 to T2 
if escape from T1 to T2.

eliminate terminates fire.
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maxTime(10).
fluents fire, water.
actions eliminate, ignite(_), escape, refill.

observe ignite(sofa) from 1 to 2.
observe ignite(bed) from 4 to 5.
observe refill from 7 to 8.

initially water.

flammable(sofa).
flammable(bed).

if fire at T1 
then deal_with_fire from T2 to T3. 

deal_with_fire from T1 to T2
if eliminate from T1 to T2.

deal_with_fire from T1 to T2
if escape from T1 to T2.

ignite(Object) initiates fire  if flammable(Object).

eliminate terminates fire.
eliminate terminates water. 
refill initiates water.

false eliminate, fire, not water.



The Dining Philosophers
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maxTime(7).
fluents available(_).
actions pickup(_,_), putdown(_,_).

initially available(fork1), available(fork2), available(fork3),
available(fork4), available(fork5).

philosopher(socrates).
philosopher(plato).
philosopher(aristotle).
philosopher(hume).
philosopher(kant).

adjacent(fork1, socrates, fork2).
adjacent(fork2, plato, fork3).
adjacent(fork3, aristotle, fork4).
adjacent(fork4, hume, fork5).
adjacent(fork5, kant, fork1).
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% dining philosophers

if philosopher(P)
then dine(P) from T1 to T2.

dine(P) from T1 to T3 if
adjacent(F1, P, F2),
pickup(P, F1) from T1 to T2,
pickup(P, F2) from T1 to T2,
putdown(P, F1) from T2 to T3,
putdown(P, F2) from T2 to T3 .

pickup(P, F) terminates available(F).
putdown(P, F) initiates available(F).

false pickup(P, F),    not available(F).
false pickup(P1, F),  pickup(P2, F), P1 \= P2.
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What happens if we replace:

dine(P) from T1 to T3 if
adjacent(F1, P, F2),
pickup(P, F1) from T1 to T2,
pickup(P, F2) from T1 to T2,
putdown(P, F1) from T2 to T3,
putdown(P, F2) from T2 to T3.

with:

dine(P) from T1 to T5 if
adjacent(F1, P, F2),
pickup(P, F1) from T1 to T2,
pickup(P, F2) from T2 to T3,
putdown(P, F1) from T3 to T4,
putdown(P, F2) from T4 to T5.



Conclusions

LPS combines
computational thinking and
logical thinking.

LPS is a practical, logical framework for computing.

LPS is not a full-scale framework for intelligent thinking, 
but it can be extended.

32
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maxTime(7).
fluents available(_).
actions  pickup(_,_), putdown(_,_).

initiallyavailable(fork1), available(fork2), available(fork3), available(fork4), available(fork5).

philosopher(socrates).
philosopher(plato).
philosopher(aristotle).
philosopher(hume).
philosopher(kant).

adjacent(fork1, socrates, fork2).
adjacent(fork2, plato, fork3).
adjacent(fork3, aristotle, fork4).
adjacent(fork4, hume, fork5).
adjacent(fork5, kant, fork1).

if philosopher(P)
then dine(P) from T1 to T2.

dine(P) from T1 to T3 if
adjacent(F1, P, F2),
pickup(P, F1) from T1 to T2,
pickup(P, F2) from T1 to T2,
putdown(P, F1) from T2 to T3,
putdown(P, F2) from T2 to T3 .

pickup(P, F) terminates available(F).
putdown(P, F) initiates available(F).

false  pickup(P, F),    not available(F).
false  pickup(P1, F),  pickup(P2, F), P1 \= P2.
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% The map colouring problem.

maxTime(5).
actions paint(_, _).

country(sweden).
country(norway).
country(finland).
country(russia).
colour(red).
colour(yellow).
colour(blue).
adjacent(sweden, norway).
adjacent(sweden, finland).
adjacent(norway, finland).
adjacent(norway, russia).
adjacent(finland, russia).

russiafinland

sweden norway
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% The map colouring problem.

maxTime(5).
actions paint(_, _).

country(iz).
country(oz).
country(az).
country(uz).
colour(red).
colour(yellow).
colour(blue).
adjacent(az, iz).
adjacent(az, oz).
adjacent(iz, oz).
adjacent(iz, uz).
adjacent(oz, uz). uzoz

az iz
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% The map colouring problem

% For every country X, there exists a colour C.

if country(X) 
then colour(C), paint(X, C) from 1 to 2.

% Two adjacent countries cannot be painted the same colour.

false   paint(X, C), adjacent(X, Y), paint(Y, C).

/* We can also write 
if country(X) 
then colour(C), paint(X, C) from T1 to T2.
*/
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% The map colouring problem.

maxTime(5).
actions paint(_, _).

country(iz).
country(oz).
country(az).
country(uz).
colour(red).
colour(yellow).
colour(blue).
adjacent(az, iz).
adjacent(az, oz).
adjacent(iz, oz).
adjacent(iz, uz).
adjacent(oz, uz).

if country(X) 
then colour(C), paint(X, C) from 1 to 2.

false   paint(X, C), adjacent(X, Y), paint(Y, C).



Bubble sort 

d          c          b          a

a          b          c          d

Keep swapping adjacent elements that are out 
of order until the array is ordered.

c          d          b          a

And so on …..

c          b          d          a
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% bubble sort with relational data structure .
maxTime(5).
fluents location(_, _).
actions swap(_,_,_,_).
initially location(d, 1), location(c, 2), location(b, 3),  location(a,4).

if location(X, N1) at T1, N2 is N1 +1,  location(Y, N2) at T1,  Y@<X
then swapped(X, N1, Y, N2) from T2 to T3.

% swapped may not work if the order of the two clauses below is
% reversed. Perhaps for good reasons.

swapped(X, N1, Y, N2) from T1 to T2
if location(X, N1) at T1, location(Y, N2) at T1,  

Y@<X, swap(X, N1, Y, N2) from T1 to T2.

swapped(X, N1, Y, N2) from T to T
if location(X, N1) at T, location(Y, N2) at T, X@<Y.

swap(X, N1, Y, N2)  initiates location(X, N2).
swap(X, N1, Y, N2)  initiates location(Y, N1).

swap(X, N1, Y, N2)  terminates location(X, N1).
swap(X, N1, Y, N2)  terminates location(Y, N2).

false swap(X, N1, Y, N2), swap(Y, N2, Z, N3).



LPS executes actions concurrently

d          c          b          a

c          d          a          b

c          a          d          b

a          c          b          d

a          b          c          d

Time 2

Time 3

Time 1

Time 4

Time 5



Teleo-reactivity

If later an object is moved, the same program will sort them again.

observe swap(a,1,c,3) from 11 to 12.
observe swap(b,2,c,3) from 15 to 16.  
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a          b          c          d

c          b          a          d

b          a          c          d

a          b          c          d

b          c          a          d

a          b          c          d

a          c          b         d

Time 12

Time 16

Time 11

Time 15
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maxTime(20).
fluents location(_, _).
actions swap(_,_,_,_).
observe swap(a,1,c,3) from 11 to 12.  %new
observe swap(b,2,c,3) from 15 to 16.  %new
initially location(d, 1), location(c, 2), location(b, 3),  location(a,4).

if location(X, N1) at T1, N2 is N1 +1,  location(Y, N2) at T1,  Y@<X
then swapped(X, N1, Y, N2) from T2 to T3.

% swapped may not work if the order of the two clauses below is
% reversed. Perhaps for good reasons.
%
swapped(X, N1, Y, N2) from T1 to T2
if location(X, N1) at T1, location(Y, N2) at T1,  

Y@<X, swap(X, N1, Y, N2) from T1 to T2.

swapped(X, N1, Y, N2) from T to T
if location(X, N1) at T, location(Y, N2) at T, X@<Y.

swap(X, N1, Y, N2)  initiates location(X, N2).
swap(X, N1, Y, N2)  initiates location(Y, N1).
swap(X, N1, Y, N2)  terminates location(X, N1).
swap(X, N1, Y, N2)  terminates location(Y, N2).
false swap(X, N1, Y, N2), swap(Y, N2, Z, N3).
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% bankTransfer

maxTime(9).
actions transfer(From, To, Amount).
fluents balance(Person, Amount).

initially balance(bob, 0), balance(fariba, 100).
observe transfer(fariba, bob, 10) from 0 to 1.

if transfer(fariba, bob, X) from  T1 to T2  
then transfer(bob, fariba, 10) from T2 to T3.

if transfer(bob, fariba, X) from  T1 to T2  
then  transfer(fariba, bob, 20) from  T2 to T3.
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% bankTransfer – the Causal Theory.

transfer(From, To, Amount) initiates balance(To, New) 
if    balance(To, Old),  New is Old + Amount.

transfer(From, To, Amount) terminates balance(To, Old).

transfer(From, To, Amount) initiates balance(From, New) 
if    balance(From, Old),  New is Old - Amount.

transfer(From, To, Amount) terminates balance(From, Old).

false transfer(From, To, Amount), balance(From, Old),  Old < Amount.

false transfer(From, To1, Amount1), 
transfer(From, To2, Amount2),  To1 \=To2.

false transfer(From1, To, Amount1), 
transfer(From2, To, Amount2),  From1 \= From2.
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% bankTransfer

maxTime(9).
actions transfer(From, To, Amount).
fluents balance(Person, Amount).

initially balance(bob, 0), balance(fariba, 100).
observe transfer(fariba, bob, 10) from 0 to 1.

if transfer(fariba, bob, X) from  T1 to T2  
then transfer(bob, fariba, 10) from T2 to T3.

if transfer(bob, fariba, X) from  T1 to T2  
then  transfer(fariba, bob, 20) from  T2 to T3.

transfer(From, To, Amount)initiates balance(To, New) 
if    balance(To, Old),  New is Old + Amount.

transfer(From, To, Amount) terminates balance(To, Old).

transfer(From, To, Amount) initiates balance(From, New) 
if    balance(From, Old),  New is Old - Amount.

transfer(From, To, Amount) terminates balance(From, Old).

false transfer(From, To, Amount), balance(From, Old),  Old < Amount.

false transfer(From, To1, Amount1), 
transfer(From, To2, Amount2),  To1 \=To2.

false transfer(From1, To, Amount1), 
transfer(From2, To, Amount2),  From1 \= From2.



Natural language grammars can be represented by logic programs

sentence -> nounphrase, verbphrase
nounphrase -> adjective, noun
nounphrase -> noun
verbphrase -> verb, nounphrase
verbphrase -> verb
adjective -> my
adjective -> your
noun -> name
noun -> what
noun -> bob
verb -> is

46
-> is the opposite of logical if.
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% sentences as complex events and as complex plans

maxTime(10).

observe say(turing, what) from 0 to 1.
observe say(turing, is) from 1 to 2.
observe say(turing, your) from 2 to 3.
observe say(turing, name) from 3 to 4.

if saying(turing, sentence) from T1 to T2 
then saying(robot, sentence) from T3 to T4.

saying(Agent, sentence) from T1 to T3 if 
saying(Agent, nounphrase) from T1 to T2,
saying(Agent, verbphrase) from T2 to T3.
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saying(Agent, nounphrase) from T1 to T3  if
saying(Agent, adjective) from T1 to T2,
saying(Agent, noun) from T2 to T3.

saying(Agent, nounphrase) from T1 to T2  if
saying(Agent, noun)     from T1 to T2.

saying(Agent, verbphrase) from T1 to T3  if
saying(Agent, verb) from T1  to T2,
saying(Agent, nounphrase) from T2 to T3.

saying(Agent, verbphrase) from T1 to T2   if
saying(Agent, verb) from T1 to T2.

saying(Agent, adjective) from T1 to T2 if say(Agent, my) from T1 to T2.
saying(Agent, adjective) from T1 to T2 if say(Agent, your) from T1 to T2.

saying(Agent, noun) from T1 to T2 if say(Agent, name) from T1 to T2.
saying(Agent, noun) from T1 to T2 if say(Agent, what) from T1 to T2.
saying(Agent, noun) from T1 to T2 if say(Agent, bob) from T1 to T2.

saying(Agent, verb) from T1 to T2 if say(Agent, is) from T1 to T2.
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fluents said(_,_).
actions say(_,_).

initially said(turing, []), said(robot, []).

say(Agent, Word)  initiates said(Agent, NewPhrase)
if said(Agent, OldPhrase), 

append(OldPhrase, [Word], NewPhrase).

say(Agent, Word) terminates  said(Agent, OldPhrase) 
if said(Agent, OldPhrase).

false say(Agent, Word1), 
say(Agent, Word2), 
Word1 \= Word2.
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maxTime(10).

fluents said(_,_).
actions say(_,_).

observe say(turing, what) from 0 to 1.
observe say(turing, is) from 1 to 2.
observe say(turing, your) from 2 to 3.
observe say(turing, name) from 3 to 4.

if saying(turing, sentence) from T1 to T2  then saying(robot, sentence) from T3 to T4.

saying(Agent, sentence) from T1 to T3 if saying(Agent, nounphrase) from T1 to T2,
saying(Agent, verbphrase) from T2 to T3.

saying(Agent, nounphrase) from T1 to T3  if saying(Agent, adjective) from T1 to T2,
saying(Agent, noun) from T2 to T3.

saying(Agent, nounphrase) from T1 to T2  if saying(Agent, noun)     from T1 to T2.

saying(Agent, verbphrase) from T1 to T3  if saying(Agent, verb) from T1  to T2,
saying(Agent, nounphrase) from T2 to T3.

saying(Agent, verbphrase) from T1 to T2   if saying(Agent, verb) from T1 to T2.

saying(Agent, adjective) from T1 to T2 if say(Agent, my) from T1 to T2.
saying(Agent, adjective) from T1 to T2 if say(Agent, your) from T1 to T2.

saying(Agent, noun) from T1 to T2 if say(Agent, name) from T1 to T2.
saying(Agent, noun) from T1 to T2 if say(Agent, what) from T1 to T2.
saying(Agent, noun) from T1 to T2 if say(Agent, bob) from T1 to T2.
saying(Agent, verb) from T1 to T2 if say(Agent, is) from T1 to T2.

initially said(turing, []), said(robot, []).
say(Agent, Word)  initiates said(Agent, NewPhrase) if said(Agent, OldPhrase),  append(OldPhrase, [Word], NewPhrase).
say(Agent, Word) terminates  said(Agent, OldPhrase) if said(Agent, OldPhrase).
false say(Agent, Word1),  say(Agent, Word2),    Word1 \= Word2.


